Cationic Reduction of Bastadin-4 to Bastadin-5. Preparation of 5-[²H]-Bastadin-5 by Site-Specific Isotopic Labeling

Makoto N. Masuno and Tadeusz F. Molinski*

Department of Chemistry, One Shields Avenue, University of California, Davis, California 95616

Received August 23, 2002

A chemoselective conversion of bastadin-4 to the important Ca^{2+} channel modulator bastadin-5 (**1a**) has been achieved using cationic hydrogenation (Et₃SiH, TFA, 60%). Specifically deuterated bastadin-5 (**1b**, >95 at. %) was prepared following this method and the simplified ¹H NMR H-5/H₂-6 spin system of **1b** exploited to study temperature-dependent macrocyclic ring dynamics.

The natural product bastadin-5 (1a) first isolated from a marine sponge of Ianthella basta Pallas, 1766 (Ianthellidae), collected on the Great Barrier Reef,¹ is a potent agonist of the RyR1 calcium channel.² Compound 1a induces opening of the Ca²⁺ channel and mobilization of Ca²⁺ stores from the sarcoplasmic reticulum (SR) at micromolar concentrations as measured by binding of [3H]ryanodine to the open state of the channel (ED₅₀ \sim 2.3 μ M). Some congeners of 1a, but not all, also stimulate opening of the SR Ca²⁺ channel; however, the electrophysiological characteristics are dramatically different. For example, bastadin-4 (2, 5,6-dehydrobastadin-5, EC₅₀ 14.7 μ M) is somewhat less efficacious than 1a, while bastadin-6 (3, EC_{50} 2.6 μ M), containing six bromine atoms instead of five, has comparable activity.³ The constitutional isomer of **1a**, bastadin-19 (4),² which arises through an alternate phenolic coupling that places both catechol units in the same hemisphere, is essentially inert (EC₅₀ > 100 μ M). Of particular interest is bastadin-10 (5^4), which mobilizes Ca^{2+} from SR stores (EC $_{50}$ 5.8 μ M) in the absence of threshold levels of Ca²⁺ ($\sim \mu M$),⁵ thus obviating the absolute Ca²⁺ requirement for native channel opening.

Our interest in the mechanistic and electrophysiological aspects of bastadin-promoted Ca2+ channel gating led to a requirement for specifically tritiated bastadin-5 (1c). Radiolabeled 1c would enable study of the kinetic and thermodynamic details of channel gating in finer detail. The most direct approach to 1c appeared to be tritiation by catalytic hydrogenation of naturally occurring 2 which co-occurs in some extracts of I. basta. Unfortunately, the molecular structure of 2 is replete with multiple functional groups including aryl Br and ketoximes that are intolerant to hydrogenation conditions. In fact, heterogeneous catalytic hydrogenation of 2 (Pd-C, H₂, 1 atm) resulted in extensive hydrogenolysis of all aryl-Br groups and reduction of the oximes to the corresponding primary amines.⁶ Even short exposures (Pd-C or Rh₂O₃ or PtO₂, 1 atm H₂ in MeOH, EtOH, or *i*-PrOH, 5-20 min) gave mainly overreduced products or irreproducible yields of 1a. Heterogeneous catalytic tritiation or deuteriation has drawbacks due to the possibility of "scrambling" of label or unpredictable levels of ³H incorporation due to label "wash-out" in protic solvents. In fact, attempted deuteriation of 2 (D₂, 1 atm, PtO_2) gave only low yields of **1a** (<30%) with *no detectable* incorporation of deuterium.⁶ Attempted homogeneous catalytic hydrogenation of 2 or the corresponding tetra-O-TBS ether with Wilkinson's catalyst [(Ph₃P)₃RhCl, H₂]⁷ gave no reaction, even at high pressure (>1000 psi H_2) presumably

due to steric congestion at the 5,6-trans-double bond within the macrocycle.⁶

In anticipation of these problems we recently developed an efficient procedure for the cationic reduction of Nstyrenyl carbamates using triethylsilane in the presence of TFA.⁸ Yields for the reduction N-styrenyl carbamates were consistently >90%. Isotopic labeling experiments with Et₃SiD and TFA-*d* showed that the hydride equivalent was delivered exclusively from the silane to the N-substituted carbon of the enamine with no evidence of isotope scrambling (>99 at. % with Et₃SiD).⁸ The reaction also worked with NaBH₄ in TFA, albeit with lower yield; however, we reasoned that the oxime groups in 1a would be more resistant to cationic hydride reduction conditions compared with conventional metal hydride reagents. We now report an efficient conversion of 2 to 1a using cationic reduction and its adaptation to the synthesis of 5-²H-bastadin-5 (1b). The latter compound was prepared in >90 at. % isotopic yield and complete regioselectivity.

Samples of bastadin-4 (>95% pure) were prepared by chromatographic separation-purification of MeOH/CH₂Cl₂ extracts of Ianthella basta, collected in Guam, using a modification of a previously described procedure.⁹ Trial reductions were carried out to determine optimum conditions for conversion and minimization of over-reduction (Table 1). Bastadin-5 dissolves readily in TFA, but Et₃SiH and TFA are immiscible liquids and the reaction proceeds under two-phase conditions. We found that the method of mixing had a critical bearing on the outcome of the reaction. Optimum conditions (entry 3, Et₃SiH, 10 equiv, vortexing) gave smooth reduction of 2 to 1a in 20 min at room temperature on an analytical scale (69% yield of 1a, 29% of unreacted 2). Use of excess Et₃SiH (100 equiv) did not significantly improve the rate of reaction or yield. The rate of reduction of 2 was slower than that of more electrophilic α,β -unsaturated carbamates⁸ under the same conditions. Extended reaction times resulted in lower yields and byproducts arising, presumably, by reduction of the oxime groups.

The method was applicable to milligram-scale preparation of **1a**. Thus, 4.0 mg of **2** was converted to **1a** (60% yield, 30% recovered **2**). The ¹H NMR spectrum and MS data (ESI negative ion, m/z 1012.6, $C_{34}H_{26}O_8N_4^{79}Br_5$, $[M - H]^-$) of the product were identical with those of an authentic sample of **1a** isolated from *I. basta.* Specific deuteriation of **2** was achieved under essentially the same conditions using Et₃SiD (10 equiv) to provide pure **1b** (40%). The MS and ¹H NMR spectra of **1b** verified incorporation of deuterium (ESIMS m/z 1013.8, $[M - H]^-$, >95 at. %).

Analysis of the ¹H NMR spectrum (CDCl₃)¹⁰ of **1b** (Figure 1) confirmed the presence of one deuterium at C-5. The methylene signal, which appeared as a triplet in **1a** (δ 2.83, t, J = 5.8 Hz), had now collapsed to a doublet in **1b** (2.82, d, J = 6 Hz), while the upfield amide NH signal changed

from a triplet to a doublet (δ 6.57, d, J = 6.4 Hz), as expected. The regiospecific incorporation of only one deuterium atom at C-5 in **1b** is consistent with a mechanism that involves initial protonation at the more electron-rich C-6 (cf. Figure 1 in ref 8).

The ¹H NMR spectrum of **1b** displays a simplified ¹H NMR spin system at C-5 and C-6, which is useful in examining conformational dynamics of the bastarane macrolactam ring. Using Pople notation, the spin network at H-5/H₂-6 in **1b** approaches an A₂X system if conformational freedom allows averaging of the diastereotopic proton signals due to H₂-6, or ABX if conformational rigidity imposes a barrier to inversion of the bastadin macrocycle. The ¹H NMR spectrum of **1b** (CD₃OD) at room temperature revealed the expected coupling pattern for H-5/H₂-6 corresponding to rapid dynamic interconversion between two or more *gauche* rotamers. At lower temperatures (T = -30 °C) the spectrum became broader, but H-5/H₂-6 did not separate into the ABX pattern expected from restricted conformational mobility.¹¹ The persistence of the pattern,

Table 1. Trial Cationic Hydrogenations of 1a with Et₃SiH and TFA

entry	Et ₃ SiH (equiv)	conc of 2 (mM)	temp (°C)	method of mixing ^a	time (min)	unreacted 2 (%)	yield of 1 ^a (%)
1	100	6	25	А	10	48	48^{b}
2	100	5	25	А	20	26	68^b
3	10	4	25	А	20	29 ^c	69^d
4	100	3	0	В	480	32	27^{e}
5	10	5	30	С	60	0	0^{f}
6	100	5	30	С	60	0	5^{f}

^{*a*} Method A: vortex solution. B: magnetic stirring, only. C: sonication. Yields were determined by HPLC analysis and are normalized against calibration standards of **1a** and **2**. Ratios of **1** to **2** were verified by ¹H NMR (integration). ^{*b*} Shoulder on peak for **1a** (\sim 20%). ^{*c*} Shoulder on peak for **2** (\sim 50%). ^{*d*} Shoulder on peak for **1a** (\sim 2%). ^{*e*} Unidentified "shoulder" (\sim 50%). ^{*f*} Main peak, unidentified

even at -50 °C, shows that conformational mobility is maintained in contrast to **6**, the *O*-tetramethyl derivative of bastadin-12 (7), where atropisomerism emerges at -30 °C.¹²

In summary, chemoselective reduction of **2** with Et₃SiH or Et₃SiD delivers **1** in good yield and recovery. Since tritiated triethylsilane (Et₃SiT) is readily obtained by reduction of Et₃SiCl with LiBT₄,^{13,14} the foregoing reaction provides a practicable route to the preparation of useful radiolabeled **1** and its analogues from **2** and other labeled bastadins from naturally occurring 5,6-dehydro analogues such as bastadins-7¹ and -14.¹⁵

Experimental Section

General Experimental Procedures. Et₃SiH, Et₃SiD, and TFA were obtained from Sigma-Aldrich and used as received. ¹H NMR spectra were recorded at 400 MHz and referenced to residual solvent peaks (δ 7.24 and 3.30 ppm for CDCl₃ and CD₃OD, respectively). Trial reductions were monitored by an analytical HPLC equipped with an HP 1040 diode array detector (4.6 × 250 mm RP C₁₈, 1.0 mL/min, 68:32 MeOH/H₂O-0.05% TFA). Mass spectra were recorded on a Thermofinnigan LC Deca in ESI mode by direct infusion as solutions in MeOH/0.1% HCO₂H.

Isolation of Bastadin-5 (1a), Bastadin-4 (2), and Bastadin-6 (3) from Ianthella basta (ex Guam). Samples of I. basta (Pallas, 1766) (Ianthellidae), collected in Guam, were soaked in 1:1 CHCl₂/MeOH, and the filtered extracts were concentrated to a red gum (1.00 g). The residue was redissolved in MeOH, diluted with H₂O (final concentration, 10% v/v H₂O), and partitioned against n-hexane. The aqueous MeOH-soluble fraction (860 mg) was applied to a silica column and eluted with a gradient of solvents (EtOAc, CH2Cl2, MeOH/CH2Cl2 mixtures, and 9:6:1 CH₂Cl₂/MeOH/NH₄OH). Fractions that eluted with 10% MeOH/CH2Cl2 were shown to contain 1a and 2 (TLC, ¹H NMR) and further purified by preparative HPLC (C₁₈ reversed phase, 10×250 mm, 59:41 MeOH/H₂O-0.5% TFA, 3.0 mL/min) to provide pure 1a¹ (4 mg, 0.47% of extract, rt 22 min), 2¹ (12 mg, 1.4%, rt 19 min), and 3¹ (2 mg, 0.2%, rt 26 min) as colorless solids. Their identities were established by comparison of their ¹H NMR and MS spectra with those of literature values.^{1,8}

Preparation of Bastadin-5 (1a) from Bastadin-4 (2). Bastadin-4 (**2**, 4.0 mg, $3.93 \,\mu$ mol) was added to a vial (1 dram) fitted with a magnetic micro stir-bar, rubber septum, and a nitrogen line. Triethylsilane ($6.25 \,\mu$ L, $39.3 \,\mu$ mol) and then TFA (1.0 mL) were added to the vial by syringe and the contents rapidly agitated under an atmosphere of nitrogen. The septum was replaced with a Teflon-lined cap, and the vial then vortexed for 20 min. The volatiles were removed under a stream of nitrogen with constant stirring. Toluene (1 mL) was added and removed under vacuum. This procedure was repeated twice to remove residual TFA. The vial contents were dried under high vacuum overnight to obtain the crude product (4.0 mg). Integration of the ¹H NMR spectrum of the product revealed a 3:1 ratio of **1a** to **2**. The product was purified by HPLC (C₁₈ reversed phase, 10×250 mm, 63:37 MeOH/H₂O-0.5% TFA, 3.0 mL/min) to afford pure **1a** (2.4 mg, 60%) and recovered **2** (1.2 mg, 30%). ESIMS m/z (negative ion): $[M - H]^-$ 1012.6, 1014.7, 1016.8, 1018.7, 1020.7, 1022.7, calcd $C_{34}H_{26}O_8N_4Br_5$ 1012.77.

5-[²**H**]-**Bastadin-5 (1b).** The reduction was repeated as described above except for substitution of Et₃SiD for Et₃SiH. Purification in the usual way provided labeled **1b** (40%). The ¹H NMR of **1b** (CDCl₃) is identical to that of **1a**, except for the multiplicities of signals due to NH-4, H-5, and H-6 and integration of H-5 (see Figure 1). ESIMS (negative ion): $[M - H]^- m/z 1013.8, 1015.7, 1017.7, 1019.7, 1021.7, 1023.7, calcd for C₃₄H₂₅DO₈N₄Br₅ 1013.7730$

Acknowledgment. We thank Professor V. Paul (University of Guam, Marine Laboratory) for a generous gift of *I. basta* extract, and E. Kantorowski and K. Bailey for preliminary experiments. The 400 MHz NMR spectrometer and LCMS were funded by NSF (CHE 9808183) and NIH (SIG S10 RR14701), respectively. This work was supported by a grant from NIH (GM 57560).

References and Notes

- (1) Kazlauskas, R.; Lidgard, R. O.; Murphy, P. T.; Wells, R. J.; Blount, J. F. Aust. J. Chem. **1981**, 34, 765–786. The newest member of the series—bastadin-21—has been characterized recently: Coll, J. C.; Kearns, P. S.; Rideout, J. A.; Sankar, V. J. Nat. Prod. **2002**, 65, 753–756.
- (2) Mack, M.; Molinski, T. F.; Buck, E. D.; Pessah, I. N. J. Biol. Chem. 1994, 269, 23236–23349.
- (3) Mack, M. M. PhD Thesis, University of California, Davis, 1994.
- (d) Pordesimo, E. O.; Schmitz, F. J. J. Org. Chem. 1990, 55, 4704–4709.
 (e) (a) Chen, L.; Molinski, T. F.; Pessah, I. N. J. Biol. Chem. 1999, 274,
- (a) Chen, L.; Molinski, I. F.; Pessah, I. N. J. Biol. Chem. 1999, 274, 32603–32612. (b) Haak, L. L.; Song, L. S.; Molinski, T. F.; Pessah, I. N.; Cheng, H. P.; Russell, J. T. J. Neurosci. 2001, 21, 3860–3870.
 (6) Unpublished results: Kantorowski, E. J.; Molinski, T. F.
- (7) Osbourn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. Sect. A 1966, 1711.
- (8) Masuno, M. N.; Molinski, T. F. Tetrahedron Lett. 2001, 42, 8263– 8266.
- (9) Franklin, M. A.; Penn, S. G.; Lebrilla, C. B.; Lam, T. H.; Pessah, I. N.; Molinski, T. F. J. Nat. Prod. 1996, 59, 1121–1127.
- (10) Bastadins, including **1a**, are only sparingly soluble in CDCl_3 but very soluble in CD_3OD and $\text{DMSO-}d_6$.
- (11) A slightly different phenomenon prevailed when the temperaturedependent spectra of **1b** were measured in CDCl₃. At -50° C the H-5/6 proton signals broadened slightly, but the pair of enantiotopic isolated methylene signals due to H₂-1 and H₂-25 broadened into the baseline while the aryl signals remained sharp. This is consistent with expected changes in the ¹H NMR spectrum at or near the coalescence temperature as the A₂ pattern for each of the latter CH₂ signals transforms into a diastereotopic AB spin system (Friebolin, H. *Basic One- and Two-Dimensional NMR Spectroscopy*, VCH: Weinheim, 1991; pp 344). While this is consistent with slowed macrolactam dynamic exchange, we cannot discount other processes (e.g., aggregation).
- (12) Miao, S.; Andersen, R. J. J. Nat. Prod. 1990, 53, 1441–1446. Note that "bastadin-9", referred to in this paper, has been renamed bastadin-12 (7) (see ref 15)
- (13) (a) Guillerm, G.; Frappier, F.; Tabet, J.-C.; Marquet, A. J. Org. Chem. 1977, 42 (23), 3776–3778. (b) Neu, H.; Andres, H. J. Labeled Compd. Radiopharm. 1999, 42 (10), 992–993.
- (14) The small primary kinetic isotope effect, k_H/k_D, observed for silane hydride reduction of stabilized carbocations (Carey, F. A.; Wang Hsu, C. L. J. Organomet. Chem. **1969**, *19*, 29) suggests that tritiation carried out under the conditions similar to deuteriation will proceed at a similar rate.
- (15) Carney, J. R.; Scheuer, P. J.; Kelly-Borges, M. J. Nat. Prod. **1993**, 56, 153–157.

NP020382H